">
一、将仿真技术引入课堂教学
(一)multisim13简介
multisim13是一款专用于电子线路仿真的软件,是计算机上虚拟出的一个电子工作平台。它拥有丰富的元件库和仪器库,采用直观的图形界面创建电路,按下仿真按钮就可仿真电路的运行状态。软件中的虚拟仪器控制面板外形、操作方式都与实物相似并可实时显示测量结果,元件库中的三维元件和实物相似,让使用者有身临其境的真实感受。
(二)multisim13引入教学的必要性
笔者认为,基于动手的学习是帮助学生巩固理论概念并让他们为开发未来工业应用或开展先进的科研项目做好准备的最佳方法。任何成功的职业道路或者人生决定往往是受到启发的,参与和准备就是将这种启发变成真正可实现的东西。启发孩子以职业运动员为梦想非常简单,只要打开电视或去看一场现场的专业体育赛事。这个道理同样适用于激励学生成为一个电子工程师。我们对未来科学家和工程师的教育方式往往只局限于与实践脱节的纯理论和公式,即使燃烧最旺盛的火苗也会被这种教育方式所熄灭。而让学生参与实际的开发,又受到现实条件的限制,multisim13恰恰提供了这样一个折中的方案:以课堂学习技能为主,一个与工业应用相衔接的平台为辅,两者结合可帮助学生为应对未来的重大挑战做好准备。multisim13是将工业标准的技术集成到一个专门针对教学而设计的平台中,学生可以结合基于工业技术的教学硬件平台和教学实验室虚拟仪器套件来学习基本的工程和系统设计概念。将multisim13引进课堂,可以将抽象的、空洞的理论教学变为动态的、可视的直观演示,这不但可以有效地增强学生对电路工作状态的感性认识,提高课堂教学效率,还可以激发学生的学习兴趣,克服学生的畏难情绪。学生自己可以在电子平台上按照自己的想法随意设计电路,仿真印证自己的设想,培养了学生设计电路的创新意识;在multisim13电子平台下,可以先观察实验现象,然后带着疑问、好奇探究现象背后的理论与规律。这样顺应认知规律,提高了学生学习兴趣和对知识的理解程度。
二、multisim13在教学中应用实例
(一)传统二极管结构和单向导电性讲授过程
利用PPT图片展示一个二极管结构示意图,语言表述“将PN结两端各引出一个电极,并加以封装就制成了一个二极管”;给出二极管的电路符号。二极管重要特性就是单向导电性,流过电流的方向就是符号箭头所指的方向,二极管的导通电压锗管0.3,硅管0.7V。
(二)采用
multisim13进行课堂教学过程在multisim13元件库中调出3D虚拟器件,如图2所示。“将PN结两端各引出一个电极,并加以封装就制成了二极管”。对于图中U4管,灰色色环的一侧是阴极,另外一侧是阳极;对于直插的发光二极管U5,长引脚的是正极,短的是阴极;也可以仔细观察管子内部的电极,较小的是阳极,大的类似于碗状的是阴极。在软件电子平台上调出电阻、二极管、开关和万用表搭成图3所示电路。故意将二极管接反向电压,双击两块万用表,弹出图示右侧的显示表盘,按下仿真按钮。这时提醒学生注意:电流表示数为0,说明电路没有通,“为什么”。吸引学生注意力的同时教师将二极管转向,阳极接电源正极,阴极接电源负极,按仿真按钮,电流表示数为2.429mA,电压表示数为581.428mV,说明二极管导通。这时点题:(1)这就是二极管单向导电性:只有阳极接电源正极(高电位)阴极接电源负极(低电位)才能够导通。(2)导通电压在0.7V左右。进一步提问,电阻起什么作用?不放电阻可以么?带着问题修改电路:二极管换成LED发光管,如图4所示,电阻选择4.7K,按下仿真按钮,LED灯根本没亮!但是电流值为2.139mA,压降是1.711V;将电阻换成1.0K,再一次仿真灯亮了!电流值为10.209mA、电压值为1.791V。
(三)两种教学方法的比较
通过对两种教学过程的对比发现,通过仿真平台进行课堂教学,学生可以获得更多的信息量,比如二极管的实物形态、二极管的导通电压并不一定是0.7V、发光二极管并不是导通就发光、二极管在电路中必须配合限流电阻来使用等。传统教学采用语言描述来传递知识,优点是讲课速度快,但是文字、语言信息很难在学生头脑中建立明确的形象概念,也缺乏学生的思考和参与。引入multisim13辅助教学,可通过multisim13组建电路进行仿真,让学生看到生动的现象,将枯燥的语言符号变成了鲜活的现象过程,在这个过程中学生需要观察、思考,需要参与。在这种以学生为主体、以问题为主线的教学模式下,学生的主动性、学习积极性更高,教学效果自然更好。引入multisim13软件辅助教学的突出特点是使学生置身于真实的工程环境,能增强学生对电路的感性认识,掌握各种仪器的基本使用和电路参数的测试方法。通过人机对话的方式,能使每个学生动手接触电路,进行元件接线,参数设定,通过调试和测量,把实验与理论有机地结合起来,加深对理论的理解,提高学生的工程实践能力和创新能力。
三、结束语
通过对二极管的两种教学方法的比较,说明了EWB仿真技术在理论教学中的优势。在教改实际教学中,我们还在电路的叠加原理、暂态过程分析以及模拟电子技术中的共射级放大电路、功率放大电路、正弦波振荡电路、直流电源电路等重点、难点知识点引入了multisim13仿真技术,取得了良好的效果。在运用multisim13仿真技术进行理论教学时应注意,multisim13只是一个辅助工具,必须与PPT、FLASH动画、板书、生动的语言、严密的逻辑分析结合才能达到最佳的教学效果。同时仿真演示需要占用一定的课堂时间,必须对课堂的教学内容、进度重新设计,以满足教学进度的要求。教学实践证明,在课堂教学中引入multisim13并合理地加以运用,有效地解决了传统教学中遇到的问题,使课堂教学情境化,增强了教学的直观性、形象性、生动性和时效性,增加了课堂有效教学时间,使学生从直观的认识入手,克服畏难情绪,激发了学生的学习兴趣,培养探索精神,大大提高了课堂教学的效果。与教改前对比,教改后学生的平均成绩提高了15%,及格率由原来的75%提高到88%,而且在实验教学环节学生对器件的认知及设计电路的能力明显得到提升。在课堂教学中引入mutisim13,改善了教学手段,丰富了教学内容,培养了学生设计电路的创新意识。
作者:马永红 关维国 王亚君 单位:辽宁工业大学